
Further Explanations to the last

Chapter of my book Calculi

Differentialis on inexplicable

functions *

Leonhard Euler

§1 Since this subject, completely new in Analysis, was not treated very
diligently until now, I decided to treat the same here in much more detail and
derive all the fundamentals, upon which it is founded, from first principles;
here, it will be especially convenient to have introduced appropriate signs and
notations into the calculation. So, if an arbitrary series was propounded, I will
represent its terms corresponding to the indexes 1, 2, 3, 4 etc. by these signs
(1), (2), (3), (4) etc. and hence the general term of this series corresponding
to the indefinite index x will be (x) for me, which therefore for each series
will be a certain function of x, which I assume to be known completely, of
such a nature of course that its values can not only be exhibited for integer
numbers assumed for x but also for fractional numbers and even surdic ones.

§2 Further, let Σ : x denote the summatory term of the same series, which
shall express the sum of all terms from the first up to the term (x) such that it
is
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Number E613, translated by: Alexander Aycock, Figures by: Artur Diener, for the project
„Euler-Kreis Mainz“
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Σ : x = (1) + (2) + (3) + (4) + . . . + (x),

all values of which can therefore, as often as x was an positive integer number,
actually be exhibited from the series itself, since it will be as follows

Σ : 1 = (1),

Σ : 2 = (1) + (2),

Σ : 3 = (1) + (2) + (3),

Σ : 4 = (1) + (2) + (3) + (4)

etc.

But values of which kind the same formula Σ : x will obtain, if fractional or
even surdic values, either positive or negative, are attributed to x, is hence not
clear by any means; hence I refer these values to a peculiar kind of functions,
which I called inexplicable. Therefore, here I will especially investigate, how
such functions can be expressed by means of analytic formulas.

§3 Therefore, the whole task will be done in the most convenient way
by continued differences derived from the propounded series, where any
arbitrary terms is subtracted from the following, having done which the series
of first differences arises, from which in the same manner the second, third,
fourth etc. differences will be formed. But I will indicate all these differences
by the following characters

I. Differences II. Differences III. Differences

(2)− (1) = ∆1 ∆2− ∆1 = ∆21 ∆22− ∆21 = ∆31

(3)− (2) = ∆2 ∆3− ∆2 = ∆22 ∆23− ∆22 = ∆32

(4)− (3) = ∆3 ∆4− ∆3 = ∆23 ∆24− ∆23 = ∆33 etc.

(5)− (4) = ∆4 ∆5− ∆4 = ∆24 ∆25− ∆24 = ∆34

etc. etc. etc.
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§4 Having defined these characters one will be able to express the single
terms of the series from the first, (1), and its differences ∆1, ∆21, ∆31, ∆41 etc.
For, because it is

(2) = (1) + ∆1 and ∆2 = ∆1 + ∆21,

because of (3) = (2) + ∆2 it will be

(3) = (1) + 2∆1 + ∆21.

Hence now this equality flows

∆3 = ∆1 + 2∆21 + ∆31.

Since now it is (4) = (3) + ∆3, we will have

(4) = (1) + 3∆1 + 3∆21 + ∆31;

hence, it further follows

∆4 = ∆1 + 3∆21 + 3∆31 + ∆41.

Because of (5) = (4) + ∆4 it will be

(5) = (1) + 4∆1 + 6∆21 + 4∆31 + ∆41

and so forth. From the formation of these series itself it is manifest that here
the same coefficients, which one has in the power of the binomial, whose
exponent is smaller than the index of the propounded term by one unity,
occur. So, it will be

(n) = (1) +
n− 1

1
∆1 +

n− 1
1
· n− 2

2
∆21 +

n− 1
1
· n− 2

2
· n− 3

3
∆31 + etc.

§5 If we now augment this number n by the unity, we will have

(n + 1) = (1) +
n
1

∆1 +
n
1
· n− 1

2
∆21 +

n
1
· n− 1

2
· n− 2

3
∆31 + etc.
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Since now this last expression exhibits the term, which from the first is away
n steps, in similar manner the term, which from the second is away the same
amount of steps, (n + 2), is determined from the second and its differences;
for, it will be

(n + 2) = (2) +
n
1

∆2 +
n
1
· n− 1

2
∆22 +

n
1
· n− 1

2
· n− 2

3
∆32 + etc.

The same way it is evident that it will be

(n + 3) = (3) +
n
1

∆3 +
n
1
· n− 1

2
∆23 +

n
1
· n− 1

2
· n− 2

3
∆33 + etc.,

(n + 4) = (4) +
n
1

∆4 +
n
1
· n− 1

2
∆23 +

n
1
· n− 1

2
· n− 2

3
∆34 + etc.

etc.

§6 Therefore, hence it is plain that the general term of our series (x) itself is
defined from the first and its differences this way

(x) = (1) +
x− 1

1
∆1 +

x− 1
1
· x− 2

2
∆21 +

x− 1
1
· x− 2

2
· x− 3

3
∆31 + etc.,

whence the term following the last, (x + 1), will manifestly be

(x + 1) = (1) +
x
1

∆1 +
x
1
· x− 1

2
∆21 +

x
1
· x− 1

2
· x− 2

3
∆31 + etc.;

since this expression occurs very frequently in the following, for the sake of
brevity let us introduce the following characters:

x
1
= x,

x
1
· x− 1

2
= x′,

x
1
· x− 1

2
· x− 2

3
= x′′,

x
1
· x− 1

2
· x− 2

3
· x− 3

4
= x′′′
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etc.,

having used these we will have the following equation:

(x + 1) = (1) + x∆1 + x′∆21 + x′′∆31 + etc.,

(x + 2) = (2) + x∆2 + x′∆22 + x′′∆32 + etc.,

(x + 3) = (3) + x∆3 + x′∆23 + x′′∆33 + etc.,

(x + 4) = (4) + x∆4 + x′∆24 + x′′∆34 + etc.,

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

(x + n) = (n) + x∆n + x′∆2n + x′′∆3n + etc.

§7 Furthermore, one will also be able to determine the sum of an arbitrary
number of terms of our series alone from the first term and its differences, as
the following table declares.

Σ : 1 = (1)

add. (2) = (1) + ∆1

Σ : 2 = 2(1) + ∆1

(3) = (1) + 2∆1 + ∆21

Σ : 3 = 3(1) + 3∆1 + ∆21

(4) = (1) + 3∆1 + 3∆21 + ∆31

Σ : 4 = 4(1) + 6∆1 + 4∆21 + ∆31

(5) = (1) + 4∆1 + 6∆21 + 4∆31 + ∆41

Σ : 5 = 5(1) + 10∆1 + 10∆21 + 5∆31 + ∆41

etc.

Here, it is again evident that the coefficients are the same which occur in the
power of the binomial of the same order.
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§8 Therefore, having used the characters introduced before we will also be
able to express the summatory term of our series Σ : x; for, it will be

Σ : x = x(1) + x′∆1 + x′′∆21 + x′′′∆31 + etc.,

which form is of such a nature that for x one can not only take integer numbers
but also fractions and even any surdic numbers, both positive and negative,
in which cases this expression proceeds to infinity, if not by coincidence the
propounded series finally leads to vanishing differences; series of such a kind
are usually called algebraic, in which cases therefore one does not get to
inexplicable functions. Nevertheless, this expression found for the summatory
term, if it continues to infinity, provides no help, if differentiations or even
summations are to be done; therefore, one will have mainly to focus on how, at
least for certain cases, the found summatory term can be changed into another
forms, which both allow to be differentiated and integrated; and to this all the
auxiliary tools extend, which I explained in my book Calculi Differentialis in
greater detail and whose invention was rather obscure. But in the following
way this whole task will easily be done.

§9 To the expression found just before for the summatory term Σ : x add
many formulas contained in this general form

(n) + x∆n + x′∆2n + x′′∆3n + etc. . . .− (x + n),

whose sums, since they are equal to zero, all, no matter how many they were,
together with Σ : x will nevertheless express the summatory term. Therefore,
for n successively take all the numbers 1, 2, 3, 4 etc. and arrange the whole
expression according to the vertical columns corresponding to the values x,
x′, x′′ etc. the following way:

GENERAL EXPRESSION FOR THE SUMMATORY TERM

x(1) + x′∆1 + x′′∆21 + x′′′∆31 + etc.
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+ (1) + x∆1 + x′∆21 + x′′∆31 + x′′′∆41 + . . .− (x + 1)

+ (2) + x∆2 + x′∆22 + x′′∆32 + x′′′∆42 + . . .− (x + 2)

+ (3) + x∆3 + x′∆23 + x′′∆33 + x′′′∆43 + . . .− (x + 3)

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

+ (n) + x∆n + x′∆2n + x′′∆3n + x′′′∆4n + . . .− (x + n).

§10 Even though this expression is true without any doubt, it will neverthe-
less be extremely helpful to have confirmed it from the form itself. For this,
collect the single vertical columns into one single sum; and the sum of the
first will be

(1) + (2) + (3) + (4) + . . . + (n) = Σ : n,

The second column gives

x((1) + ∆1 + ∆2 + ∆3 + . . . + ∆n).

But because it is

∆1 = (2)− (1),

∆2 = (3)− (2),

∆3 = (4)− (3)

etc.,

this whole sum will be contracted to

x(n + 1).

In similar manner, the sum of the third column will be

x′(∆1 + ∆21 + ∆23 + ∆4 + . . . + ∆2n);

and since

∆21 = ∆2− ∆1, ∆22 = ∆3− ∆2, . . . , ∆2n = ∆(n + 1)− ∆n,
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that sum is contracted to

x′∆(n + 1).

In the same manner it is plain that the sum of the fourth column will be

x′′ ∆2(n + 1)

und der fünften

x′′′∆3(n + 1)

and so forth. But the sum of the last column to be subtracted is

(x + 1) + (x + 2) + (x + 3) + . . . + (x + n) = Σ : (x + n)− Σ : x.

§11 Therefore, the sum of all middle vertical columns except the first and
the last is, as we saw,

x(n + 1) + x′∆(n + 1) + x′′∆2(n + 1) + x′′′∆3(n + 1) + etc.

But because it is

x(1) + x′∆1 + x′′∆21 + x′′′∆31 + etc. = Σ : x,

having augmented the single terms by the number n the sum of our series
will be

x(n + 1) + x′∆(n + 1) + x′′∆2(n + 1) + etc. = Σ : (x + n)− Σ : n;

as a logical consequence the sum of completely all columns except the first is

= Σ : (x + n);

hence, if the sum of the last column, which is

Σ : (x + n)− Σ : x,

is subtracted, the sum of the total expression will remain = Σ : x, this means
the summatory term in question.
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§12 Here it might seem to be mysterious that we gave the value of the
formula ∑ : x, which is expressed by a sufficiently simple series, expressed by
means of a chaotic collection of innumerable series; but soon the highest use
of this most complicated form will become clear, whenever we continue the
number of horizontal lines to infinity, what will happen, if for n we take and
infinite number, as we will explain now in more detail.

§13 Therefore, while n denotes an infinitely large number, the sum of the
second vertical column, which is x(n + 1), will contain the infinitesimal term
of our series; therefore, if it vanishes, then a lot more will the sums of the
following vertical columns vanish, whence in this case it will suffice to have
kept just the first column together with the last in the calculation. But if the
infinitesimal terms do not vanish, but were equal to each other, then it will be
possible to neglect the third column and all the following ones. But further, if
just the second infinitesimal differences vanish, the first three vertical columns
will have to be kept in the calculation; and in similar manner four, if just the
third infinitesimal differences vanish. Therefore, according to this difference
of the series we will subdivide them into the following species.

FIRST SPECIES OF SERIES WHOSE INFINITESIMAL TERMS

VANISH

§14 Therefore, as often as such a series is propounded, for its summatory
term it will be sufficient to have kept the terms of the first and the last vertical
column in the calculation, and so we will obtain the following expression for
the summatory term

Σ : x =

(1) + (2) + (3) + (4) + etc.

− (x− 1) − (x− 2) − (x− 3) − (x− 4) − etc.,

which will continue to infinity and converges the more, the smaller the index
x was, since, if it vanishes, the whole series will go over into zero or it will be
σ : 0 = 0, which is in extraordinary agreement with the truth; for, whenever
the number of terms to be added is zero, the sum must also necessarily be
zero
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§15 But whenever the index x is a very large number, this series will certainly
hardly converge; but it will always be possible to reduce cases of this kind to
smaller indices. For, because it is

Σ : (x + 1) = Σ : x + (x + 1),

in similar manner it will be

Σ : (x + 2) = Σ : x + (x + 1) + (x + 2)

and hence in general, while i denotes an integer number,

Σ : (x + i) = Σ : x + (x + 1) + (x + 2) + . . . + (x + i).

Therefore, if the sum of x+ i terms is desired, it will suffice to have investigated
the sum of x terms, this means Σ : x, and this way one will be able to reduce
all questions of this kind to a case, where the index x in even smaller than the
unit, in which case the series given for Σ : x before will converge rapidly.

§16 Such a reduction is especially necessary, whenever the index x is a
negative number. For, because it is

Σ : x = Σ : (x− 1) + (x),

it will be
Σ : (x− 1) = Σ : x− (x)

and in the same way

Σ : (x− 2) = Σ : x− (x)− (x− 1)

and
Σ : (x− 3) = Σ : x− (x)− (x− 1)− (x− 2)

and in general

Σ : (x− i) = Σ : x− (x)− (x− 1)− . . .− (x− i + 1)

and this way, no matter how larger the negative number x − i was, the
resolution can always be reduced to σ : x, such that it is x < 1.
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EXAMPLE

Let this harmonic series be propounded

1 +
1
2
+

1
3
+

1
4
+

1
5
+ . . . +

1
x
= Σ : x,

whose sum of x shall be desired, where for x any numbers except for positive
integers can be taken, since for the cases, in which x is a positive integer, the
whole subject has no difficulty. Therefore, in this case from the form given
before it will be

Σ : x =

1 +
1
2

+
1
3

+
1
4

+ etc.

− 1
x + 1

− 1
x + 2

− 1
x + 3

− 1
x + 4

− etc.;

these two series will be contracted to this single one

Σ : x =
x

x + 1
+

x
2(x + 2)

+
x

3(x + 3)
+

x
4(x + 4)

+ etc.,

the sum of which series is known per se, as often as x was a positive integer.
So it will be

if x = 1

1 =
1
2

+
1

2 · 3 +
1

3 · 4 +
1

4 · 5 +
1

5 · 6 + etc.;

if x = 2,

1 +
1
2
=

2
1 · 3 +

2
2 · 4 +

2
3 · 5 +

2
4 · 6 +

2
5 · 7 + etc.;

if x = 3,

1 +
1
2
+

1
3
=

3
1 · 4 +

3
2 · 5 +

3
3 · 6 +

3
4 · 7 +

3
5 · 8 + etc.;
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if x = 4,

1 +
1
2
+

1
3
+

1
4
=

4
1 · 5 +

4
2 · 6 +

4
3 · 7 +

4
4 · 8 +

4
5 · 9 + etc.;

etc.,

which series are all very well known, of course.

§18 To understand these things better, let us construct the curve (Fig 1.), to
whose abscissa

0x = x

this ordinate shall correspond

xy = y = Σ : x,

such that after having taken equal intervals of unit length on the axis 0x,
namely 0, 1; 1, 2; 2, 3; 3, 4 etc. the ordinates will be

Fig. 1

1 . . . (1) = 1,

2 . . . (2) = 1 +
1
2

,

3 . . . (3) = 1 +
1
2
+

1
3

,

4 . . . (4) = 1 +
1
2
+

1
3
+

1
4

etc.;
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and the equation between the two coordinates will be

y =
x

x + 1
+

x
2(x + 2)

+
x

3(x + 3)
+

x
4(x + 4)

+ etc.,

from which equation one will therefore be able to define all intermediate
ordinates; and it will even be sufficient to have taken values smaller than unity
for x. So, if the ordinate 1

2 ·
( 1

2

)
corresponding to the abscissa 0 · · · 1

2 = 1
2 is

desired, one will find

1
2

. . .
(

1
2

)
=

1
3
+

1
2 · 5 +

1
3 · 7 +

1
4 · 9 +

1
5 · 11

+ etc.,

the sum of which series can be assigned by means of logarithms this way.
Form this series

y =
t3

1 · 3 +
t5

2 · 5 +
t7

3 · 7 +
t9

4 · 9 + etc.,

which series therefore having taken t = 1 will give the value in question; but
by differentiating we will have

dy
dt

=
t2

1
+

t4

2
+

t6

3
+

t8

4
+ etc.

and by differentiating again

ddy
2d2 = t + t3 + t5 + t7 + etc. =

t
1− tt

.

Hence it will vice versa be

dy
2dt

=
∫ tdt

1− tt
und y = 2

∫
dt
∫ tdt

1− tt
,

which double integration is in usual manner reduced to a single one, having
done which it will be

y = 2t
∫ tdt

1− tt
− 2

∫ ttdt
1− tt

.

But since one has to put t = 1 after the integration, it will be

y = 2
∫ tdt

1− tt
− 2

∫ ttdt
1− tt

= 2
∫ tdt

1 + t
;
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therefore, by integrating it will be

y = 2t− 2 log(t + 1)

and hence in our cases
y = 2− 2 log 2,

whose value approximately is 0.61370564.

§19 Now, having found the ordinate corresponding to the abscissa 1
2 , of

course

Σ :
1
2
= 2− 2 log 2,

from it the following by means of the formulas given above are easily derived,
of course

Σ :
(

1 +
1
2

)
=

2
3
+ Σ :

1
2

,

Σ :
(

2 +
1
2

)
=

2
3
+

2
5
+ Σ :

1
2

,

Σ :
(

3 +
1
2

)
=

2
3
+

2
5
+

2
7
+ Σ :

1
2

etc.

Even the preceding ordinates not expressed in the figure can be deduced from
the formula Σ : (x− i), which we [§ 16] found, of course from

Σ : (x− i) = Σ : x− (x)− (x− 1)− (x− 2)− . . .− (x− i + 1).

Therefore, since in our case it is x = 1
2 , the ordinate will be

Σ :
(
− 1

2

)
= Σ :

1
2
− 2 = −2 log 2,

it will be negative, of course. But having taken x = −1 it becomes infinite. It
will also become infinite in the cases x = −2, x = −3, x = −4 etc. But within
these intervalls it will be
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Σ : −
(

1 +
1
2

)
= Σ :

1
2
− 2 + 2,

Σ : −
(

2 +
1
2

)
= Σ :

1
2
− 2 + 2 +

2
3

,

Σ : −
(

3 +
1
2

)
= Σ :

1
2
− 2 + 2 +

2
3
+

2
5

etc.

§20 Now let us differentiate the series found for the ordinate y and it will be

dy
dx

=
1

(x + 1)2 +
1

(x + 2)2 +
1

(x + 3)2 + etc.,

which series therefore expresses the tangent of the angle, in which the curve
element is inclined to the axes in y; hence it is plain that for an infinite abscissa
this inclination will be zero, or the trace of the curve in the infinite will be
parallel to the axis. But then having taken x = 0, the inclination of the curve
at its origin itself will become known

= 1 +
1
4
+

1
9
+

1
16

+ etc. =
ππ

6
= 1.644

and hence the angle will be = 58°42′. But then having taken x = 1, it will be

dy
dx

=
1
4
+

1
9
+

1
16

+
1
25

+ etc. =
ππ

6
− 1 = 0.644,

where the inclination will be= 32°48′ and by going further the inclination will
decrease continuously.

§21 But by going backwards to negative abscissas we saw above that in the
cases, in which it is x = −1 or x = −2 or x = −3 etc. that the ordinates
become infinitely large and constitute the asymptotes of the curve. But we on
the other hand saw that in the same points it will be dy

dx = ∞ and there the
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inclination of the curve is 90◦ or the tangents will be perpendicular to the axis.
Furthermore, since the series found dy

dx always has a positive sum, it follows
that all parts of the curve always ascend going to the right, but descend going
to the left.

§22 We will even be able to perform an integration and to assign the area
of the curve from the origin to the ordinate x · y. For, from the first form, to
which we were led immediately, it will manifestly be

∫
ydx =

x +
1
2

x +
1
3

x + etc.

− log(1 + x)− log(2 + x) − log(3 + x)− etc.

+ Const.,

which constant has to be determined in such a way that in the case x = 0 the
total are vanishes; hence, it will be expressed in the usual manner this way∫

ydx =

x +
1
2

x +
1
3

x + etc.

− log(1 + x)− log
(

1 +
1
2

x
)
− log

(
1 +

1
3

x
)
− etc.

Therefore, since it is

log
(

1 +
x
n

)
=

x
n
− x2

2n2 +
x3

3n3 −
x4

4n4 + etc.,

the superior expression can be expressed by means of the following series
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∫
ydx =

+
x2

2
− x3

3
+

x4

4
− x5

5
+

x6

6
− etc.

+
x2

2 · 4 −
x3

3 · 8 +
x4

4 · 16
− x5

5 · 32
+

x6

6 · 64
− etc.

+
x2

2 · 9 −
x3

3 · 27
+

x4

4 · 81
− x5

5 · 243
+

x6

6 · 729
− etc.

+
x2

2 · 16
− x3

3 · 64
+

x4

4 · 256
− x5

5 · 1024
+

x6

6 · 4096
− etc.+etc.

§23 Now, if we collect these columns vertically, we will have∫
ydx =

+
1
2

x2
(

1 +
1
4

+
1
9

+
1
16

+
1
25

+ etc.
)
= +0.822467x2

− 1
3

x3
(

1 +
1
8
+

1
27

+
1
64

+
1

125
+ etc.

)
= −0.400685x3

+
1
4

x4
(

1 +
1
16

+
1
81

+
1

256
+

1
625

+ etc.
)
= +0.270581x4

− 1
5

x5
(

1 +
1
32

+
1

243
+

1
1024

+
1

3125
+ etc.

)
= −0.207385x5

+ etc.

Now let us put x = 1 that the areas O1(1) arises [Fig 1.]; and since the decimal
fractions given here hardly converge, not that the sum of any arbitrary series,
where the signs alternate, of course

s = a− b + c− d + e− etc.,

can be expressed by means of continued differences that it is

s =
1
2

a− 1
4

∆a +
1
8

∆2a− 1
16

∆3a + etc.,

17



by means of which rule the calculation can be done the following way:

−∆ +∆2 −∆3 +∆4 −∆5 +∆6 −∆7 +∆8

a) 0.822467
0.421782

b) 0.400685 0.291678
0.130104 0.224770

c) 0.207385 0.066908 0.183230
0.063196 0.041540 0.154737

d) 0.207385 0.025368 0.028493 0.133936
0.037828 0.013047 0.020801 0.118072

e) 0.169557 0.012321 0.007692 0.015864 0.105564 etc.
0.025507 0.005355 0.004937 0.012508

f ) 0.144050 0.006966 0.002755 0.003356
0.018541 0.002600 0.001581

g) 0.125509 0.004366 0.001174
0.014175 0.001426

h) 0.111334 0.002940
0.011235

i) 0.100099

§24 The superior numbers of these columns, the first of which was taken
from Calculi Differentialis chapter VI part II on page 456, refer to the first
term a together with its continued differences; the second one while going
down the column give the term b with its differences, the third ones c with its
differences. Since now the most upper terms hardly converge, let us actually
add the first two a− b and it will be 0.421782; but let us compute the sum of
the following c− d + e− f + etc.

=
1
2

c− 1
4

∆c +
1
8

∆2c− 1
16

∆3c + etc.

according to the given law and it will be
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+
1
2

c = 0.135290

− 1
4

∆c = 0.015799

+
1
8

∆2c = 0.003171

− 1
16

∆3c = 0.000815

+
1

32
∆4c = 0.000240

− 1
64

∆5c = 0.000077

+
1

128
∆6c = 0.000026

−
∫

eqq = 0, 000010

Sum = 0.155428

a− b = 0.421782

Area = 0.577210

But I hope that the more detailed expansion of this rather remarkable curved
line was not inappropriate for anybody, especially because the equation for
this curve extends to inexplicable functions and therefore this digression to a
special case is to be considered not the be alien to our original scope.

SECOND SPECIES OF SERIES WHOSE FIRST INFINITESIMAL

DIFFERENCES VANISH

§25 Therefore, to this species all series extend whose infinitesimal terms are
equal to each other. Therefore, to express the summatory term, Σ : x, of these
series, it will only be necessary that to the expression of the preceding species
the terms of the second vertical column of the general form exhibited in § 9

are added, the most upper term of which is to be exhibited separately; and
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since the single horizontal columns consist of three terms now, the summatory
term in question Σ : x will be defined by the following three series

Σ : x =

+ (1) + (2) + (3) + (4) + etc.

+ x(1) + x∆1 + x∆2 + x∆3 + x∆4 + etc.

− (x + 1)− (x + 2)− (x + 3)− (x + 4)− etc.;

which form because of

∆1 = (2)− (1), ∆2 = (3)− (2), ∆3 = (4)− (3) etc.

is transferred to this one

Σ : x =

+ (1− x)(1) + (1− x)(2) + (1− x)(3) + (1− x)(4) + etc.

+ x(1) + x∆1 + x∆2 + x∆3 + x∆4 + etc.

− (x + 1) − (x + 2) − (x + 3) − (x + 4) − etc.;

which series converges the more the smaller x is taken. But above we taught
that all these cases can always be reduced to the one where x is fraction
smaller than unity.

§26 Now let us at first consider the simplest case, in which all terms of
the series are equal to each other, namely (x) = a; for, it is plain per se that
the summatory term is ax which same value our expression will declare
immediately. For, it will be Σ : x = xa.

§27 Now consider the case, in which it is (x) = x+1
x such that our series is

Σ : x =
2
1
+

3
2
+

4
3
+ . . . +

x + 1
x

+ etc.,

whose infinitesimal terms are all equal to the unity. Therefore, our formula
will give us
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Σ : x =

+ (1− x) · 2
1
+ (1− x) · 3

2
+ (1− x) · 4

3
+ etc.

+ 2x + x · 3
2
+ x · 4

3
+ x · 5

4
+ etc.

− x + 2
x + 1

− x + 3
x + 2

− x + 4
x + 3

− etc.,

whence it is plain that for x = 1 it will be Σ : x = 2
1 ; but having taken x = 2 it

will be

Σ : x =

− 1 · 2
1
− 1 · 3

2
− 1 · 4

3
− etc.

+ 4 + 2 · 3
2
+ 2 · 4

3
+ 2 · 5

4
+ etc.

− 4
3
− 5

4
− 6

5
− etc.

= 4− 2
1
+

3
2

.

§28 This case can indeed easily be reduced to the preceding species. For,
because the general term is (x) = x+1

x , it resolved into parts will give (x) = 1
x ;

therefore, form two series, the first from the general term 1, the other for
the general term 1

x , and these to series taken together will give the sum in
question Σ : x; of course, it will be

Σ : x =

+ 1 + 1 + 1 + 1 + . . . + 1

+ 1 +
1
2
+

1
3
+

1
4
+ . . . +

1
x

.
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Now the sum of the superior series is x, the sum of the inferior on the other
hand can be expanded by means of the first species and one will hence have

Σ : x =

x + 1 +
1
2

+
1
3

+
1
4

+ etc.

− 1
x + 1

− 1
x + 2

− 1
x + 3

− 1
x + 4

− etc.,

which expression is a lot simpler than the preceding one, but it nevertheless
exhibits the same value. So, if one takes x = 1

2 , the first expression will give us

Σ : x =

+
1
2
· 2

1
+

1
2
· 3

2
+

1
2
· 4

3
+

1
2
· 5

4
+ etc.

+ 1 +
1
2
· 3

2
+

1
2
· 4

3
+

1
2
· 5

4
+

1
2
· 6

5
+ etc.

− 5
3
− 7

5
− 9

7
− 11

9
− etc.

and having collected the terms in order it will be

Σ :
1
2
= 1 +

1
3 · 4 +

1
5 · 12

+
1

7 · 24
+

1
9 · 40

+
1

11 · 60
+ etc.,

whose structure will become clear from the following form

Σ :
1
2
= 1 +

1
1 · 3 · 4 +

1
2 · 5 · 6 +

1
3 · 7 · 8 +

1
4 · 9 · 10

+
1

5 · 11 · 12
+ etc.

The other expression on the other hand gives this series

Σ :
1
2
=

1
2
+ 1 +

1
2
+

1
3
+

1
4
+ etc.

− 2
3
− 2

5
− 2

7
− 2

9
− etc.,
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which having collected the terms will give

Σ :
1
2
=

1
2
+

1
3
+

1
2 · 5 +

1
3 · 7 +

1
4 · 9 + etc.

§29 From this example it becomes clear that the series deduced from the
second species converges more than the last derived from the first species;
hence it will worth one’s while to consider the convergence of the first series
with more attention. Any arbitrary term of this series arises from these three
parts

1
2
· n + 1

n
+

1
2
· n + 2

n + 1
− 2n + 3

2n + 1
;

since they approximately mutually cancel each other, the sum of the first two
will be equal to the third, whence this rather remarkable formula follows

n + 1
n

+
n + 2
n + 1

=
2(2n + 3)

2n + 1
,

which comes the closer to the truth the greater the number n was. Hence
subtracting 2 on both sides it will approximately be

1
n
+

1
n + 1

=
4

2n + 1
.

§30 But such a reduction to the first species can always take place, whenever
the propounded series finally converges to a finite value; but if the terms of
the series increase to infinity, this reduction cannot further be done and hence
one will necessarily have to recur to the second species. Such a case is the one,
in which it is (x) =

√
x; for, while n is an infinite number the two contiguous

infinitesimal terms will be
√

n and
√

n + 1, whose difference is 1
2
√

n and hence
vanishing. Therefore, in this case our series will be

Σ : x =
√

1 +
√

2 +
√

3 +
√

4 + . . . +
√

x.

Therefore, hence by means of the given prescriptions we will have this expres-
sion

Σ : x =
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+ (1− x)
√

1 + (1− x)
√

2 + (1− x)
√

3 + etc.

+ x + x
√

2 + x
√

3 + x
√

4 + etc.

−
√

x + 1 −
√

x + 2 −
√

x + 3 − etc.;

how much this series converges let us see in the case x = 1
2 and it will be

Σ :
1
2
=

+
1
2

√
1 +

1
2

√
2 +

1
2

√
3 +

1
2

√
4 + etc.

+
1
2
+

1
2

√
2 +

1
2

√
3 +

1
2

√
4 +

1
2

√
5 + etc.

−
√

3
2
−
√

5
2
−
√

7
2
−
√

9
2
− etc.;

and having collected the terms the arbitrary one will be

1
2
√

n +
1
2

√
n + 1−

√
2n + 1

2
,

which has to come the closer to zero the greater the number n was, whence it
will approximately be

√
n +
√

n + 1 =
√

2(2n + 1).

For, having taken squares we will have

2n + 1 + 2
√

n(n + 1) = 2(2n + 1)

and hence

2
√

n(n + 1) = 2n + 1.

Having squared once again it will be

4nn + 4n = 4nn + 4n + 1,
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which ratio certainly comes approximately to that of equality. Furthermore, it
deserves to be mentioned here that the true values for the fractions assumed
for x are transcendental of such a degree that they cannot be expressed by
means if any analytical formulas. Any arbitrary value assumed for x will even
belong to a peculiar kind if transcendentals.

§31 But before we leave this species let us add this extraordinary theorem
on the convergence of this formulas which is much more general than the one
which we stated just before.

THEOREM

The following equality

(β− α) µ
√

nν + α µ

√
(n + 1)ν = β µ

√(
n +

α

β

)ν

will come the closer to the truth the larger the number n is taken, and at the same the
the smaller the fraction α

β was, if just the exponent ν
µ was smaller than unity. But

having taken a negative ν this equality

β− α
µ
√

nν
+

α
µ
√
(n + 1)ν

=
β

µ

√(
n + α

β

)ν

without the last condition will come the closer to the truth the larger the number n
and the smaller the fraction α

β was. Under the same conditions by means of logarithms
it will even approximately be both

(β− α) log n + α log(n + 1) = β log
(

n +
α

β

)
and

β− α

log n
+

α

log(n + 1)
=

β

log
(
n + α

β

) .

PROOF

§32 This theorem follows from the general solution given for this species
whose arbitrary term consists of these parts
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(1− x)(n) + x(n + 1)− (n + x)

and becomes the smaller the larger the number n is taken while x is a fraction
smaller than unity. If we now put x = α

β and (x) = µ
√

xν and hence also

(n) = µ
√

nν, it is necessary, that it is ν
µ < 1, since otherwise the infinitesimal

terms would not have vanishing differences. But these substitutions yield the
first formulas given in the theorem. But whenever the fraction ν

µ is assumed
to be negative, then the propounded series will even be contained in the first
species, since the infinitesimal terms go over into nothing.

§33 To understand the power of this theorem, it will helpful to have noted
that these formulas are completely correct in four different cases; the first of
them is the case, if α = 0; the second, when α = β; the third the one, in which
it is ν = 0; finally, the fourth takes place, if for n an infinite number is taken.
Furthermore, a fifth case is given, in which in the first formula it is µ = ν or

µ
√

nν = n.

THE THIRD SPECIES OF SERIES OF WHICH JUST SECOND INFINITESIMAL
DIFFERENCES VANISH

§34 Therefore this will happen, as often as the infinitesimal terms themselves
constitute an arithmetic progression; therefore, the formula found for Σ : x
before in the superior species will be accommodated to this case, if additionally
the single terms of the third vertical column (of the general form exhibited in
§ 9) are added. This way the summatory term will be expressed the following
way

Σ : x =

+ (1) + (2) + (3) + . . . + (n) + etc.

+ x(1) + x∆1 + x∆2 + x∆3 + . . . + x∆n + etc.

+ x′∆1 + x′∆21 + x′∆22 + x′∆3 + . . . + x′∆2n + etc.

− (x + 1)− (x + 2)− (x + 3)− . . .− (x + n)− etc.
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§35 Now let us change this expression to a more useful form; and at first
instead of x′ let us write its value xx−x

2 ; then, because of

∆n = (n + 1)− (n)

and

∆2n = (n + 2)− 2(n + 1) + (n)

having substituted these values the last column of the preceding formula will
go over into this form

(n) + x (n + 1) +
xx− x

2
(n + 2)

− x(n)− (xx− x)(n + 1)

+
xx− x

2
(n)

which terms collected will yield

xx− 3x + 2
2

(n)− (xx− 2x)(n + 1) +
xx− x

2
(n + 2).

Therefore, for the sake of brevity let us put

xx− 3x + 2
2

= p, xx− 2x = q und
xx− x

2
= r

and the summatory term in question will be expressed in the following form

Σ : x =

3x− xx
2

(1) +
xx− x

2
(2)

+ p(1)− q(2) + r(3)− (x + 1)

+ p(2)− q(3) + r(4)− (x + 2)

+ p(3)− q(4) + r(5)− (x + 3)

+ etc.,

which series already converges rapidly.
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§36 Therefore, we can hence derive a new theorem similar to the preceding
one but extending a lot further by putting as before

x =
α

β
, (n) = µ

√
nν,

where it already suffices that the exponent ν
µ is smaller than two; but even

more it will be possible to set the exponent negatively.

THEOREM

This equality

(αα− 2αβ + 2ββ) µ
√

nν − (2αα− 4αβ) µ

√
(n + 1)ν + (αα− αβ) µ

√
(n + 2)ν

= 2ββ µ

√(
n +

α

β

)ν

will come the closer to the truth the larger the number n is taken and the less the
fraction α

β differs from unity, as long as ν
µ is smaller than two. But than having taken

a negative µ in the most cases it will a lot more accurately be

αα− 3αβ + 2ββ
µ
√

nν
− 2αα− 4αβ

ν
√
(n + 1)ν

+
αα− αβ

µ
√
(n + 2)ν

=
2ββ

µ

√(
n + α

β

)ν
.

One will even be able to take logarithms for the formulas containing roots.

§37 The formulas in this theorem are exactly true in these four cases

1°) α = 0, 2°) α = β, 3°) ν = 0, and 4°) n = ∞.

Furthermore, the same happens, whenever in the first form it is either ν = µ

or ν = 2µ such that it is µ
√

nν or n or nn. Therefore, we have six cases, in which
this theorem does not deviate from the truth; hence, it is easily understood
that in all remaining cases the error cannot be notable.
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§38 We can also render this theorem more general by writing n
c instead of

n and multiplying by a respective power of c everywhere, to get rid of the
fractions. And so the first formula will become

(αα− 3αβ + 2ββ) µ
√

nν − 2αα− 4αβ) µ

√
(n + c)ν

+(αα− αβ) µ

√
(n + 2c)ν = 2ββ µ

√(
n +

αc
β

)ν

,

but the other formula only deviates from this one, that roots go into the
denominator, which is also to be understood for logarithms.

§39 It will be worth one’s while to have illustrated this theorems by some
examples. Therefore, take α = 1 and β = 2 and the equalities exhibited in the
theorem will become

3 µ
√

nν + 6 µ

√
(n + c)ν − µ

√
(n + 2c)ν = 8 µ

√(
n +

1
2

c
)ν

,

3
µ
√

nν
+

6
µ
√
(n + 1)ν

− 1
µ
√
(n + 2)ν

=
8

µ

√(
n + 1

2

)ν
.

Let us apply the first form to logarithms and it will be

3 log n + 6 log(n + c)− log(n + 2c) = 8 log
(

n +
1
2

c
)

.

Now, let n = 10 and c = 2 that it arises

3 log 10 + 6 log 12− log 4 = 8 log 11.

After the expansion it will therefore be

3 log 10 = 3.0000000 log 14 = 1.1461280

6 log 12 = 6.4750872 8 log 11 = 8.3311416

9.4750872 = 9.4772696,

whose difference is 0.0021824, which would have arise a lot smaller, if we had
attributed a larger value to the number n.
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§40 It is especially convenient to note especially about the summatory term
of the propounded series that so the differentiation as the integration can be
done easily having taken the index x as a variable, as it was already shown
in the first species in more detail, where the summatory term Σ : x itself was
considered as the ordinate of a certain curve, while the x is the abscissa, and
in this sense I investigated inexplicable functions in Calculi Differentialis

§41 But from the general formula for the summatory term Σ : x given above
let us also expand the case of the harmonic series here, in which it is

Σ : x = 1 +
1
2
+

1
3
+

1
4
+ . . . +

1
x

,

and let us ask for its value for the index x = 1
2 ; and because of (x) = 1

x we
will then because of

p =
3
8

, q = −3
4

, r = −1
8

have
Σ :

1
2
=

5
8
− 1

16

+
3
8
+

3
16

+
1
8
+

3
32

+ etc.

+
3
8
+

1
4
+

3
16

+
3
20

+ etc.

− 1
24
− 1

32
− 1

40
− 1

48
− etc.

− 2
3
− 2

5
− 2

7
− 2

9
− etc.
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or it will be

8Σ :
1
2
=

9
2

+
3
1
+

3
2

+
3
3
+

3
4
+ etc.

+
6
2
+

6
3

+
6
4
+

6
5
+ etc.

− 1
3
− 1

4
− 1

5
− 1

6
− etc.

− 16
3
− 16

5
− 16

7
− 16

7
− etc.

Let us collect the single columns into one single term and it will be

8Σ :
1
2
=

9
2
+

6
1 · 2 · 3 · 3 +

6
2 · 3 · 4 · 5 +

6
3 · 4 · 5 · 7 +

6
4 · 5 · 6 · 9 + etc.,

which series certainly converges stronger than the one we found in the second
species.

§42 But if we do not contract the terms, but collect those, which have the
same denominator, having omitted the lowest series, we will have

8Σ :
1
2
=

9
2
+

3
1
+

9
2

+ 8
(

1
3
+

1
4
+

1
5
+

1
6
+

1
7
+ etc.

)
− 16

(
1
3
+

1
5
+

1
7
+

1
9
+

1
11

+ etc.
)

or by writing

16
(

1
6
+

1
8
+

1
10

+
1

12
+ etc.

)
instead of the superior series we will have

1
2

Σ :
1
2
− 3

4
= −1

3
− 1

5
+

1
6
− 1

7
+

1
8
− 1

9
+

1
10
− 1

11
+ etc.
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Let us add on both sides

log 2 = 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6
+ etc.;

it will be
1
2

Σ :
1
2
− 3

4
+ log 2 = 1− 1

2
− 1

4
=

1
4

,

as a logical consequence it is

Σ :
1
2
= 2− log 2,

which value agrees extraordinarily with the one which was given in the first
species.
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SUPPLEMENT

ON INEXPLICABLE FUNCTIONS OF THE FORM:
Π : x = A · B · C · D · E · · · · · X

§1 Here the factors A, B, C, D etc. are terms of a certain series corresponding
to the indices 1, 2, 3, 4 etc. and X is the term corresponding to the index x;
but the factors, which correspond to the following indices

x + 1, x + 2, x + 3 etc.

I will denote by X′, X′′, X′′′. Hence it is immediately plain that it will be

Π : (x + 1) = X′ ·Π : x

and

Π : (x + 2) = X′ · X′′ ·Π : x

and for forth. But the preceding ones will be

Π : (x− 1) =
Π : x

X

etc.

Hence it is understood that it suffices to have assigned these formulas only
for values of x smaller than the unity.

§2 As often as x was a positive integer the values of Π : x will arise directly.
For, it will be

Π : 1 = A, Π : 2 = AB, Π : 3 = ABC etc.

But whenever x is not a positive integer the product, which we denoted by
this character Π : x, will be an inexplicable function of x, if not coincidentally
the factors A, B, C, D etc. were of such a nature that the preceding ones are
cancelled by the following ones, as it happens, e.g., in this form

Π : x =
1
2
· 2

3
· 3

4
· 4

5
· · · · · x

x + 1
,
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since here it manifestly is

Π : x =
1

x + 1
,

or also in this example

Π : x =
3
4
· 8

9
· 15

16
· 24

25
· · · · · xx + 2x

(x + 1)2 .

For, hence it will be

Π : 1 =
3

2 · 2, Π : 2 =
2
3
=

4
2 · 3, Π : 3 =

5
8
=

5
2 · 4, Π : 4 =

3
5
=

6
2 · 5,

Π : 5 =
7

2 · 6 etc.,

whence it is plain that it will be in general

Π : x =
x + 2

2(x + 1)
.

§3 But the inexplicable cases will be reduced to the preceding dissertation
by taking logarithms

log Π : x = log A + log B + log C + . . . + log X,

which form compared to the one treated will give us the following values

Σ : x = log Π : x,

(1) = log A, (2) = log B, (3) = log C etc. und (x) = log X;

but then it will be

(x + 1) = log X′, (x + 2) = log X′′ etc.;

and having observed this consensus let us accommodate the species treated
above to the present case
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FIRST SPECIES WHERE THE LOGARITHMS OF THE INFINITESIMAL
FACTORS VANISH OR WHERE THE INFINITESIMAL FACTORS ARE EQUAL

TO UNITY

§4 Therefore, since for this first species having introduced the values just
given we have

log Π : x =

+ log A + log B + log C + log D + etc.

− log X′ − log X′′ − log X′′′ − log XIV − etc.,

by ascending to numbers it will be

Π : x =
A
X′
· B

X′′
· C

X′′′
· D

X′′′′
· etc.

Here, I add no examples, since many are already expanded in Calculi Differen-
tialis.

THE SECOND SPECIES WHERE THE INFINITESIMAL FACTORS ARE
EQUAL TO EACH OTHER

§5 For, then their logarithm will also be equal to each other and hence the
differences will all vanish. Therefore, let us accommodate the formula found
above in § 25 to this and it will be

log Π : x =

+ (1− x) log A + (1− x) log B + (1− x) log C + etc.

+ x log A + x log B + x log C + x log D + etc.

− log X′ − log X′′ − log X′′′ − etc.,

whence by ascending to numbers we will have

Π : x = Ax · A1−x · Bx

X′
· B1−x · Cx

X′′
· C1−x · Dx

X′′′
· etc.
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THE THIRD SPECIES, WHERE THE INFINITESIMAL TERMS CONSTITUTE A
GEOMETRIC PROGRESSION

§6 For, then the logarithms of these terms will constitute an arithmetic
progression, whose second differences will therefore vanish. To accommodate
the expression found above in § 35 to this case, it is to be noted that for the
sake of brevity it was put

p =
xx− 3x + 2

2
, q = xx− 2x and r =

xx− x
2

,

whence we will have

log Π : x =

+ p log A + p log B + p log C + etc.

+
3x− xx

2
log A− q log B − q log C − q log D − etc.

+
xx− x

2
log B + r log C + r log D + r log E + etc.

− log X′ − log X′′ − log X′′′ − etc.

Put further let us put here for the sake of brevity

xx− 3x
2

= m and
xx− x

2
= n;

and by ascending to numbers we will have this expression

Π : x =
Bn

Am ·
ApCr

BqX′
· BpDr

CqX′′
· CpEr

DqX′′′
· etc.

§7 This way I am confident to have exhausted the doctrine on the inexplicable
functions, which in Calculi Differentials was not explained sufficiently accurate
and clear, almost completely, such that nothing more can be desired; but this
seemed to be even more necessary, since this subject is almost completely new
and was treated by nobody. But its use is especially huge in the interpolation of
series and hence the properties of curved lines, whose ordinates are expressed
by means of inexplicable functions, were to be investigated.
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